

Fuel Cycle and System Considerations

GRNS Meeting Washington, D.C. April 2-3, 2002

Overview

- System definition approach
- Generic fuel cycle options
- Fuel cycle specification
- Symbiotic fuel cycle options

System Definition Approach

- Evaluations required specification of entire system
 - Reactor
 - Energy conversion system
 - Fuel cycle front and back end
- Choice of fuel cycle for each system based in part on FCCG studies
 - Achievable gains toward SU goals with different system options
 - Potential for fuel cycle symbiosis
 - » Different reactors may fulfill specific actinide management functions

Generic Fuel Cycle Options

FUEL CYCLE

	REACTOR	2	Once Through	Partial Fissile Recycle	Full Fissile Recycle	Full Actinide Recycle
Thermal	Water	IPSR SBWR CANDU-NG SCWR-T	U, Th U, Th U, Th U, Th	U, Th U, Th U, Th U, Th	Th Th Th Th	Th Th Th Th
	Gas	PBR PMR VHTR	U, Th U, Th U, Th	U, Th U, Th U, Th	Th Th Th	Th Th Th
	NC	AHTR MSR VCR	U, Th	U, Th	Th U, Th U	Th U, Th U
Epithermal/ Fast	Water	HC-BWR SCWR-F			U, Th U, Th	<mark>U</mark> , Th <mark>U</mark> , Th
Fast	Gas	GFR			U, Th	<mark>U</mark> , Th
	LM	Na/A Na/B Pb/C-US Pb/C-RF Pb/D			U, Th U, Th U, Th U, Th U, Th	U, Th U, Th U, Th U, Th U, Th

Slide 4

Fuel Cycle Specification

- Once-through cycle (U fertile) adopted for thermal reactors with solid fuel (water, gas, AHTR)
 - Prevalent deployment configuration (~90% of capacity if deployed alongside Pu-recycle variant)
 - Limited fissile recycle (established for water reactors) achieves
 - » Modest gain in fuel utilization
 - » Significant reduction in HLW mass (U removal)
 - » Limited radio-toxicity reduction benefit
 - Full fissile (Pu) and full actinide recycle less attractive than in fast-spectrum or fluid fueled systems
 - » Technical challenges and performance penalties result from buildup of higher Pu isotopes and minor actinides in thermal spectrum

Fuel Cycle Specification, cont'd

- <u>Full fissile or full actinide recycle</u> (Th fertile) adopted for closedcycle GCR
 - Closed Th cycle is also an option for other thermal reactors
 - Waste management benefits are greater for full actinide recycle, but technical viability and performance potential are not established
 - Resource extension benefits of closed Th cycle are greatest for high conversion-ratio cores (e.g., GCR, HC-ABWR, and HWR)

Fuel Cycle Specification, cont'd

- <u>Full actinide recycle</u> adopted for:
 - a) Fast water, gas, and LM reactor systems (U fertile)
 - b) Fluid fueled reactor systems (U for VCR, Th for MSR)
 - Initial fissile inventory extracted from LWR/ALWR SNF
 - Full actinide recycle yields significant reduction of long-term waste toxicity and decay heat
 - Symbiotic with thermal reactors whose irradiated fuel can be efficiently reprocessed
 - Actinide-burning fast spectrum systems provide transition to breeding should this be required in the future

Symbiotic Fuel Cycle Options

Simultaneously advance Gen IV waste management and economic goals

```
{ALWR, CANDU-NG, SBWR, IPSR, SCWR-T}
{PBR, PMR, VHTR}
+ 
| Na-Metal LMR | Pb-Bi LMR | SCWR-F | GFR | MSR | VCR | VCR |
```

- Technology for reprocessing GCR coated-particle fuel is not well established
- Extend resources while retaining thermal reactors as part of the energy mix and limiting waste disposal challenges

{Na LMR} + {VHTR, AHTR, MSR, HC-ABWR}

Na-Oxide LMR